plum module#

A sage module for analyzing manifolds plumbed along 2-spheres.

This module enables the user to enter a plumbing diagram and return basic information about the corresponding 3- and 4-dimensional manifolds, for example the intersection form, homology, etc.

For negative definite plumbing trees equipped with a spin^c structure, the program can also compute the weighted graded root [AJK21], \(\widehat{Z}\) invariant [GPPV20], and the \(\widehat{\widehat{Z}}\) invariant [AJK21].

[AJK21]

Rostislav Akhmechet, Peter K Johnson, and Vyacheslav Krushkal. Lattice cohomology and q-series invariants of 3-manifolds. arXiv preprint arXiv:2109.14139, 2021.

[BMM20]

Kathrin Bringmann, Karl Mahlburg, and Antun Milas. Quantum modular forms and plumbing graphs of 3-manifolds. J. Combin. Theory Ser. A, 170:105145, 32, 2020. doi:10.1016/j.jcta.2019.105145.

[CCF+19]

Miranda C.N. Cheng, Sungbong Chun, Francesca Ferrari, Sergei Gukov, and Sarah M. Harrison. 3d modularity. J. High Energy Phys., pages 010, 93, 2019. doi:10.1007/jhep10(2019)010.

[DM19]

Irving Dai and Ciprian Manolescu. Involutive Heegaard Floer homology and plumbed three-manifolds. J. Inst. Math. Jussieu, 18(6):1115–1155, 2019. doi:10.1017/s1474748017000329.

[Don83]

S. K. Donaldson. An application of gauge theory to four-dimensional topology. J. Differential Geom., 18(2):279–315, 1983.

[Flo88]

Andreas Floer. An instanton-invariant for 3-manifolds. Comm. Math. Phys., 118(2):215–240, 1988.

[GS99]

Robert E. Gompf and András I. Stipsicz. 4-manifolds and Kirby calculus. Volume 20 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1999. ISBN 0-8218-0994-6. doi:10.1090/gsm/020.

[GM21]

Sergei Gukov and Ciprian Manolescu. A two-variable series for knot complements. Quantum Topol., 12(1):1–109, 2021. doi:10.4171/qt/145.

[GPP21]

Sergei Gukov, Sunghyuk Park, and Pavel Putrov. Cobordism invariants from BPS q-series. In Annales Henri Poincaré, 1–31. Springer, 2021.

[GPPV20]

Sergei Gukov, Du Pei, Pavel Putrov, and Cumrun Vafa. BPS spectra and 3-manifold invariants. J. Knot Theory Ramifications, 29(2):2040003, 85, 2020. doi:10.1142/S0218216520400039.

[GPV17]

Sergei Gukov, Pavel Putrov, and Cumrun Vafa. Fivebranes and 3-manifold homology. J. High Energy Phys., pages 071, front matter+80, 2017. doi:10.1007/JHEP07(2017)071.

[HM17]

Kristen Hendricks and Ciprian Manolescu. Involutive Heegaard Floer homology. Duke Math. J., 166(7):1211–1299, 2017. doi:10.1215/00127094-3793141.

[Jon85]

Vaughan F. R. Jones. A polynomial invariant for knots via von Neumann algebras. Bull. Amer. Math. Soc. (N.S.), 12(1):103–111, 1985. doi:10.1090/S0273-0979-1985-15304-2.

[LZ99]

Ruth Lawrence and Don Zagier. Modular forms and quantum invariants of 3-manifolds. Asian Journal of Mathematics, 3(1):93–108, 1999.

[Neu81]

Walter D. Neumann. A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves. Trans. Amer. Math. Soc., 268(2):299–344, 1981. doi:10.2307/1999331.

[Nem05]

András Némethi. On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds. Geom. Topol., 9:991–1042, 2005. doi:10.2140/gt.2005.9.991.

[Nem08]

András Némethi. Lattice cohomology of normal surface singularities. Publ. Res. Inst. Math. Sci., 44(2):507–543, 2008. doi:10.2977/prims/1210167336.

[OzsvathSSzabo14a]

Peter Ozsváth, András I. Stipsicz, and Zoltán Szabó. A spectral sequence on lattice homology. Quantum Topol., 5(4):487–521, 2014. doi:10.4171/QT/56.

[OzsvathSSzabo14b]

Peter Ozsváth, András I. Stipsicz, and Zoltán Szabó. Knots in lattice homology. Comment. Math. Helv., 89(4):783–818, 2014. doi:10.4171/CMH/334.

[OzsvathSzabo03]

Peter Ozsváth and Zoltán Szabó. On the Floer homology of plumbed three-manifolds. Geom. Topol., 7:185–224, 2003. doi:10.2140/gt.2003.7.185.

[OzsvathSzabo04a]

Peter Ozsváth and Zoltán Szabó. Holomorphic disks and three-manifold invariants: properties and applications. Ann. of Math. (2), 159(3):1159–1245, 2004. doi:10.4007/annals.2004.159.1159.

[OzsvathSzabo04b]

Peter Ozsváth and Zoltán Szabó. Holomorphic disks and topological invariants for closed three-manifolds. Ann. of Math. (2), 159(3):1027–1158, 2004. doi:10.4007/annals.2004.159.1027.

[RT91]

N. Reshetikhin and V. G. Turaev. Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math., 103(3):547–597, 1991. doi:10.1007/BF01239527.

[Wit89]

Edward Witten. Quantum field theory and the Jones polynomial. Comm. Math. Phys., 121(3):351–399, 1989.